Loading...

During vessel operation, performance loss & overheating issues are directly related to the build-up of Marine growth.

Marine growth, such as barnacles will begin attaching to underwater components such as propellers & intakes in as little as 10 days following a fresh cleaning.

Maximizing & sustaining vessel performance is our specialty. We maintain the integrity & smooth operation of all underwater components.

HULL COATINGS:  A quality barrier coat & anti-fouling paint application are crucial to the structural service life of any hull. Together, the barrier coat and bottom paint act as the main barrier between the outside water and the interior substrate. Though initially more expensive, the cost effectiveness of superior paints are obvious when you look at their multi-season performance, ability to be relaunched and no-buildup, self-polishing nature. We recommend discussing with the boat yard about their application processes and demand multi-layer thin coats opposed to one thick coat. Inferior applications will result in paint blistering and paint flaking, causing water to permeate through the gelcoat and into the hull substrate; resulting in costly time & financial repairs. http://www.boatus.com/boattech/articles/bottom-line.asp

PAINT BLISTERING:  This process is similar to hull blistering but is referring to the bubbles or blisters forming under the paint itself. Inevitably this will result in paint flaking. It is imperative to apply coatings according to manufacture specifications. We typically see paint blistering appear within the first 6 months of a new bottom job. Experienced divers will note paint blistering and if counteractive measures are taken by the owner it can result in dramatic savings. Most bottom paint applications have a 1 year warranty and noting these problems early will always eliminate headaches down the road.  https://international-yachtpaint.com/en/au/support/boat-paint-problems/blistering-bubbling

PAINT FLAKING:  As we know, bottom paint and the barrier coat work together to act as the primary layer between your vessel and the underwater elements. Paint flaking creates a void in this duo and over-time could become ground zero for a hull blister to appear. As diver's clean and inspect the hull, they will note the size and quantity of any paint flaking that they find.

HULL BLISTERING:  Also known as osmotic blistering or hydrolysis is the terms used to describe small particles of water passing through the gelcoat and into the hull laminates. As soon as the water enters into the laminate it begins to dissolve any soluble materials within the laminate. The dissolved laminate molecules are too large to exit the substrate and as time passes, the blistering gradually increases. Please see the article below and refer to page 4 for a more detailed description about this process.  https://www.westsystem.com/wp-content/uploads/Gelcoat-Blisters-Diagnosis-Repair-and-Prevention.pdf

DELAMINATION:       This process is referring to a more horizontal release of the layers of fiberglass along the outer hull substrate. Overstressing and high impact to the hull can cause tiny cracks or small voids in the hull materials. Over time, through normal wear, vibrations and impact, the fiberglass layers begins to peal or release from itself. We typically see this where repairs have been made without proper compression of the fiberglass-resin-gelcoat application. 

Call us at (850) 696-2828 or fill out our Contact Us form to schedule a service.

CORROSION:       One of the most damaging and costly naturally occurring events seen today. Corrosion is an all-too-common result of electrochemical reactions between materials and substances in their environment.  https://www.electrochem.org/corrosion-science

GALVANIC CORROSION:       Refers to corrosion damage induced when two dissimilar materials are coupled in a corrosive electrolyte (saltwater). It occurs when two (or more) dissimilar metals are brought into electrical contact under water. When a galvanic couple forms, one of the metals in the couple becomes the anode and corrodes faster than it would all by itself, while the other becomes the cathode and corrodes slower than it would alone.  http://www.boatus.com/boattech/articles/marine-corrosion.asp

ELECTROLYSIS:       More commonly called "stray current" corrosion, adds an external electrical source to the corrosion equation, rapidly accelerating the reaction. It occurs when metal with an electrical current flowing into it is immersed in water that is grounded (which would include any lake, river, or ocean). This can happen if a short develops between an external current source (almost always the 12-volt electrical system on your boat or someone else's) and some part of the electrical system that is tied into the boat's underwater metals. The stray current will exit the boat from an underwater metal fitting.  https://www.boatus.com/seaworthy/magazine/2015/july/marine-corrosion-101.asp

DEALLOYING:       Dealloying or selective leaching refers to the selective removal of one element from an alloy by corrosion processes. A common example is the dezincification of un-stabilized brass, whereby a weakened, porous copper structure is produced. "Discoloration" or a "pinkish hue" in brass or bronze is a sign of dealloying.  https://www.nace.org/Dealloying/

BONDING & HALOING:      At the first sign of haloing (burnt paint around thru-hull fittings), the first step is to inspect all bonding system connections to ensure they are clean, tight and corrosion free. Next would be to have a corrosion survey conducted on the vessel to determine if proper galvanic protection is being provided. If diver’s find paint haloing they will note specific details & take photographs of the severity. https://www.passagemaker.com/technical/-through-hull-fittings-and-canaries-in-coal-mines

PROPELLER CAVITATION:       As the propeller turns it absorbs the torque developed by the engine at given revolutions i.e., the delivered horsepower – and converts that to the thrust which, in turn, pushes the vessel through the water. According to Bernoulli’s law the passage of a hydrofoil (propeller blade section) through the water causes a positive pressure on the face of the blade and a negative pressure on its back. The negative pressure causes any gas in the water to evolve into bubbles similar to those found when opening a carbonated beverage. These bubbles collapse and can cause hammer like impact loads on the propeller blades, resulting in the observed damage to the propeller blade surfaces. We typically see cavitation pitting at the base of the propeller flukes and even on the sides of rudders. This pitting is concentrated to one specific location, this is how we determine if its corrosion vs. cavitation.  https://www.iims.org.uk/introduction-propeller-cavitation/

Call us at (850) 696-2828 or fill out our Contact Us form to schedule a service.

BONDING SYSTEMS:       “In the simplest of terms, bonding systems are an interconnection of underwater metallic components, including through hulls, struts, rudder stocks, and propeller shafts. Like any other critical component, bonding systems should be inspected regularly. When installing or augmenting bonding systems, connections should be made using heat shrink terminals, and conductant paste such as Thomas & Betts Kopr-Shield. Completed connections should be coated with corrosion inhibitor such as CRC Heavy Duty Corrosion Inhibitor.”  https://www.proboat.com/2015/04/the-mysteries-of-bonding-systems-revealed/

CATHODIC PROTECTION:       One type of cathodic protection system is the sacrificial anode.  The anode is made from a metal alloy with a more "active" voltage (more negative electrochemical potential) than the metal of the structure it is protecting (the cathode). The difference in potential between the two metals means the sacrificial anode material corrodes in preference to the structure. This effectively stops the oxidation reactions on the metal of the structure being protected.  https://galvanizeit.org/corrosion/corrosion-protection/sacrificial-anodes

SACRIFICIAL ANODES:       Underwater anodes come in 3 materials: 

  • Zinc – Designed for saltwater environments.
  • Aluminum – Designed for Saltwater or Brackish water environments.
  • Magnesium – Designed for freshwater environments.

Depending on where the vessel will be kept determines the specific anode materials to be chosen. Proper anode monitoring & installation will greatly extend the service life of all your underwater metals. West Marine has a great video in the attached link. https://www.westmarine.com/WestAdvisor/Preventing-Galvanic-Corrosion

ANODE MONITORING:       We monitor each component and its anode(s) specifically. Each component and its anode(s) are bonded together and are part of the vessels bonding system. With detailed monitoring we track each component down to the smallest detail - minor details can result in major savings down the road. By tracking the service history of each anode we are able to predict its future replacement, stocking its replacement specifically for your vessel. Accurate anode monitoring and proper anode installation are imperative to the service life of underwater metals.  

ANODE INSTALLATION:       Our goal is to keep your underwater anodes maintained and your underwater metals protected. Prior to installation, the diver will remove any surface residues left behind from the previous anode. Good bonding connections insure proper cathodic protection. Stainless steel fasteners all always used and all anodes are mad in the USA. We provide a wide variety of sacrificial anodes and replace them at 50% depleted; quotes upon request.   

HANGING-ANODES:       This can be a great solution for sailboats and vessels with inadequate anode protection. Hanging-anodes are designed to be an accessory to the underwater anodes. These anodes are manufactured with a long cable and a clamp, simply clamp the cable to the vessel-bonding-system and place anode overboard into the water. These anodes can be checked topside simply by lifting the anode out of the water by its cable and cleaning off surface residues. http://www.boatzincs.com/hanging_anode_zinc.html

GALVANIC ISOLATORS:       A galvanic isolator is a device used to block low voltage DC currents coming on board your boat from the shore power ground wire.  These currents could cause corrosion to your underwater metals; through hulls, propeller, shaft etc.  By installing a galvanic isolator on your boat, your zinc anodes will protect your underwater metals from corrosion. Make sure the isolator you purchase has a fail-safe UL Marine rating.  https://www.cruisingworld.com/how/one-cool-remedy-galvanic-isolators

Call us at (850) 696-2828 or fill out our Contact Us form to schedule a service.

Testimonials

Secure Online Payment